Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrei S. Batsanov

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.128$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Pyridinium nitrate at 120 K

The structural unit of pyridinium nitrate, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{NO}_{3}{ }^{-}$, is a pyridinium-nitrate ion pair, held together by a strong N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Received 15 November 2004 Accepted 19 November 2004 Online 27 November 2004

Comment

The present paper reports the low-temperature study of the title compound, (I). For the introduction and the roomtemperature results, see the preceeding paper (Batsanov, 2004).

(I)

Cooling of (I) from 290 to 120 K resulted in an approximately 4% decrease of the unit-cell volume, which was shown (by fast determinations at 160,200 and 250 K) to be practically linear in this range. It is noteworthy that, whilst at room temperature $\beta>90^{\circ}$, on cooling it decreases, passing through 90° at 250 K . Therefore, in the present report, the non-standard cell setting with $\beta<90^{\circ}$ is used, for compatibility with the room-temperature data (Serewicz et al., 1965; Batsanov, 2004).

The structure at 120 K (Fig. 1) is similar to that at room temperature (see Table 1), with the anisotropic displacement parameters approximately three times lower [$U_{\text {eq }}$ of non-H atoms averaging 0.08 (1) \AA^{2} at 290 K versus 0.027 (5) \AA^{2} at $120 \mathrm{~K}]$. The asymmetric unit comprises one pyridinium cation and one nitrate anion, the ionic nature of which is proven by the location of H atoms. Both ions are planar, and the dihedral angle between them increases from 13.7 (1) ${ }^{\circ}$ at 290 K to $21.1(1)^{\circ}$ at 120 K . This change can be best approximated as a rotation of the anion around atom O 1 , which is hydrogen bonded to the cation (Table 2). The deviations of the nitrate

Figure 1
The molecular structure of (I) at 120 K . Displacement ellipsoids are drawn at the 50% probability level. The dashed and dotted lines indicate strong and weak hydrogen bonds, respectively.
anion atoms from the pyridine ring plane illustrate this point, viz. O1 -0.302 (4), O2 0.081 (6), O3 0.174 (5) and N 2 -0.006 (5) \AA at 290 K versus $\mathrm{O} 1-0.265$ (4), O2 0.274 (5), O3 0.496 (4) and N2 0.173 (4) A at 120 K.

The ion pair is held together by a strong (Steiner, 2002) and nearly linear $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bond (Table 2). The $\mathrm{N} 1 \cdots \mathrm{O} 1$ distance decreases from 2.787 (3) \AA at 290 K to 2.699 (2) \AA at 120 K ; cf. 2.730 (3) \AA in the structure of $\mathrm{PyH}^{+} \cdot \mathrm{MeSO}_{3}{ }^{-}$at 173 K (Bolte et al., 2001) and 2.664 (4)2.698 (4) \AA in $\mathrm{PyH}^{+} . \mathrm{F}_{3} \mathrm{CCO}_{2}^{-}$, (II), at 183 K (Palmore \& McBride-Wieser, 1997). In (I), the ion pair is further stabilized by a weak (Desiraju \& Steiner, 1999) hydrogen bond (C2$\mathrm{H} 2 \cdots \mathrm{O} 3$) involving the ortho H atom, thus producing a sevenmembered ring. This motif can be described by the graph set $R_{2}^{2}(7)$, according to Etter et al. (1990) and Bernstein et al. (1995). The same motif is realised in the structure of (II), where the $\mathrm{C}($ ortho $)-\mathrm{H} \cdots \mathrm{O}$ bonds are substantially stronger: the C $\cdots \mathrm{O}$ distances range from 3.175 (4) to 3.214 (4) \AA versus 3.229 (3) \AA in (I), and the $\mathrm{H} \cdots \mathrm{O}$ distances (for the $\mathrm{C}-\mathrm{H}$ bond lengths corrected to $1.08 \AA$) from 2.28 (3) to 2.42 (4) \AA versus 2.55 (3) \AA in (I). The weaker bonding in (I) can be easily explained, as atom H 2 participates in a bifurcated hydrogen bond, with O 3 of the same ion pair and with O 2 of an adjacent ion pair. The latter bond is evidently the stronger, with the C. . O distance shorter by $0.15 \AA$. No such competition is possible in (II), which contains no O atoms not involved in intra-pair hydrogen bonds.

In fact, all H atoms in (I) participate in inter-pair $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts which are shorter than the sum of van der Waals radii (Rowland \& Taylor, 1996), correspond to the stabilizing part of the potential curve (Desiraju \& Steiner, 1999) and can be interpreted as weak hydrogen bonds (Table 2).

Due to protonation of N 1 , the $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$ angle in (I) is widened in comparison with the neutral pyridine molecule [116.6 (2) ${ }^{\circ}$; Mootz \& Wusson, 1981] and coincides with those in $\mathrm{PyH}^{+} \cdot \mathrm{MeSO}_{3}{ }^{-}$and (II).

Experimental

The crystals of (I) were grown by slow evaporation, at room temperature, of an aqueous solution of equimolar amounts of pyridine and nitric acid.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{NO}_{3}{ }^{-}$

$M_{r}=142.12$
Monoclinic, $P 2_{d} / c$
$a=3.7756$ (9) А
$b=12.336$ (3) \AA
$c=13.353$ (3) \AA
$\beta=88.60(1)^{\circ}$
$V=621.8(4) \AA^{3}$
$Z=4$

$$
D_{x}=1.521 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 851 reflections
$\theta=10.4-24.9^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=120$ (1) K
Plate, colourless
$0.42 \times 0.37 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer

ω scans

Absorption correction: none
3711 measured reflections 1408 independent reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.128$
$S=1.04$
1408 reflections
115 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.045 P)^{2} \\
&+0.4158 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 2$	$1.339(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.370(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.343(3)$	$\mathrm{O} 1-\mathrm{N} 2$	$1.272(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.373(3)$	$\mathrm{O} 2-\mathrm{N} 2$	$1.237(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.389(3)$	$\mathrm{O} 3-\mathrm{N} 2$	$1.245(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.383(3)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$122.2(2)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.6(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.3(2)$	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 3$	$121.32(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.7(2)$	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 1$	$119.44(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.8(2)$	$\mathrm{O} 3-\mathrm{N} 2-\mathrm{O} 1$	$119.24(17)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.5(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 . ${ }^{\text {O }}$ 1	0.97 (3)	1.74 (3)	2.699 (2)	171 (3)
N1-H1..O3	0.97 (3)	2.47 (3)	3.160 (3)	128 (2)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$	0.93 (2)	2.63 (2)	3.229 (3)	122.4 (18)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {i }}$	0.93 (2)	2.50 (2)	3.076 (3)	119.9 (18)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {ii }}$	0.96 (2)	2.62 (2)	3.272 (3)	125.3 (17)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {iii }}$	0.94 (2)	2.65 (2)	3.244 (3)	121.5 (16)
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3^{\text {iii }}$	0.97 (2)	2.61 (2)	3.240 (3)	122.8 (18)
C6-H6 ${ }^{\text {O }} \mathbf{1}^{\text {iv }}$	0.97 (2)	2.38 (2)	3.215 (3)	143.1 (19)
C6-H6 ${ }^{\text {O }} \mathrm{O}^{\text {iv }}$	0.97 (2)	2.60 (2)	3.384 (3)	137.8 (18)

Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $1+x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv)
$-x, 1-y, 1-z$.
All H atoms were refined in an isotropic approximation without constraints.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author thanks Dr I. F. Perepichka for providing single crystals of (I).

References

Batsanov, A. S. (2004). Acta Cryst. E60, o2424-o2425.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1557.
Bolte, M., Griesinger, C. \& Sakhaii, P. (2001). Acta Cryst. E57, o458-o460.
Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Mootz, D. \& Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517-1522.

organic papers

Palmore, G. T. R. \& McBride-Wieser, M. T. (1997). Acta Cryst. C53, 19041907
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.

Serewicz, A. J., Robertson, B. K. \& Meyers, E. A. (1965). J. Phys. Chem. 69, 1915-1921.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

